dlp和lcd的区别只要说出它们在应用过程中的不同谢谢

更新时间:2016-04-04本文内容转载自互联网
首先要知道成像模式上主要分为DLP、LCD两个阵营相信多数人也都知道,两大技术阵营的较量由来已久,各自都有着非常忠实的厂商制作各自不同的产品,但产品线太长,选择起来比较困难,因此对于投影机一定要有一定的了解才能够做到心中有数。首先了解一下两大技术的区别:起源和发展:DLP与LCD本质上的区别发展现状:DLP与LCD平分秋色应用指导:DLP向左 LCD向右,商用家用各有选择起源和发展:DLP与LCD本质上的区别LCD起源:夏普在上个世纪七十年代就制作出液晶显示器,由于CRT的发展以及技术的过于纯熟,LCD投影机是市场中的老牌产品,但真正进入量产还是在上个世纪90年代中期。得益于早期爱普生、索尼等老牌劲旅的支持和其他诸多厂商的追捧,一直是全球投影机市场的主导产品。LCD工作原理:该技术的原理是利用液晶分子的光电效应,运用电场作用让液晶分子的排列发生变化,从而使透光率和反射率这两种变化导致液晶的光学特性发生改变,最后产生出不同的灰度层次或颜色图像。LCD优势:LCD投影仪的主要优势在于其三原色光是由三片分离的液晶板组成,对于每一种颜色的亮度和对比度进行了单独的控制,因此所能够获得的分辨率较高,画面层次感好。并且由于LCD的投影方式发展至今已经非常成熟,三原色光同步水平也达到了令人满意的效果,使得LCD投影仪则更适合于动态画面的投影输出。但最重要的还是价格便宜。DLP起源:然而实际上DLP技术本来是美国德州仪器厂开发本来准备用于军事作战上的显示技术,但是由于种种原因居然变成了民用显示设备,这种技术更受到了追求视频效果的消费者的青睐。DLP工作原理:DLP是Digital Light Processor的英文缩写,中文名称叫数字光学处理技术。该技术是投影和显示信息领域中的一个新思路。作为一种全数字的反射式投影技术,DLP投影机以DMDDigital Micromirror Device数字微镜作为成像元件,完成了显示数字的最终环节。DLP优势:DLP投影由于芯片高度集成,因此在功耗方面有本质上的优势,不易因为高温、潮湿和震动等环境因素而影响影像品质。全数码影像处理方式可提供更多弹性应用,不论是观赏电视、家庭影院、上网、玩电子游戏或浏览数码相机的影像,通通可利用DLP投影机完成。而且采用全数字反射式投影技术,采用了数字技术之后可大大提高图像的灰度等级,使图像噪声消失并稳定画面质量,在图像定位上也比以往精确了许多,因此所获得的图象对比度比较高,显得更加饱满。并且该种技术还具采用反射式的DMD器件之后,成像器件的总光效率得到了很大提高。目前市场上的DLP投影仪大都属于单片式投影仪,色彩均匀性比较突出,在放映文本、CAD、幻灯片时效果更显得出众,加上DLP投影仪有着极高的对比度,即使在亮度不高的情况下仍然可以保持清晰锐利的图像。DLP技术与LCD技术比较:比较点 DLP影技术 LCD投影技术核心技术 全数字DDR DMD芯片 液晶板成像原理 DLP投影原理是将光投射穿过高速转动的红蓝绿色轮盘再射到DLP晶片反射成像。 LCD利用光学投射穿过红绿蓝三原色滤镜后,再将三原色投射穿过三片液晶板上,合成投影成像。清晰度 像素间隙小,画面清晰,无闪烁现象 像素间隙大,有马赛克现象,微有闪烁亮度 高 一般对比度 光填充量高达90%的填充量总光效率大于60% 光填充量最大在70%左右总光效率大于30%彩色还原度 高数字成像原理 一般受数模转换的限制灰度级 高1024级/10bit 层次不够丰富色彩均匀性 大于90%TOSHIBA色域补偿电路,使色彩一致 无色域补偿电路,随液晶板老化而产生日益严重的色差亮度均匀性 大于95%TOSHIBA 数字均匀过渡补偿电路,使屏前亮度更均匀 无补偿电路,有"太阳效应"性能 DLP芯片采用密封封装,受环境影响小,且有20年以上的使用寿命,可靠性高 LCD液晶材料受环境影响大,不稳定灯泡寿命 使用飞利浦原装UHP长寿命灯泡,寿命长,DLP一般适用长时间显示的地方 灯泡寿命短,LCD不适合连续长时间工作使用寿命 DLP晶片的寿命为100000小时以上 液晶板寿命20,000小时左右受外界光线干扰程度 DLP技术、一体化箱体结构,不受外界光线干扰 严重,在外界光线下,不能正常清晰显示DLP投影机特点: DLP投影机的技术是反射式投影技术。反射式DMD器件的应用,DLP投影机拥有反射优势,在对比度和均匀性都非常出色,图像清晰度高、画面均匀、色彩锐利,并且图像噪声消失,画面质量稳定,精确的数字图像可不断再现,而且历久弥新。 由于普通DLP投影机用一片DMD芯片,最明显的优点就是外型小巧,投影机可以做得很紧凑。现市场上所有的1.5公斤以下的迷你型投影机都是DLP式,大多数LCD 投影机要超过2.5公斤。 DLP投影机的另一个优点是图像流畅,反差大。这些视频优点使其成为家庭影院世界中之首选品种。有较高的对比度,现在,大多数 DLP投影机的对比度可做到 600:1 到 800:1的之间,低价位的也可达450:1。LCD投影机对比度只在400:1附近,而低价位的才250:1。画面的视感冲击强烈,没有像素结构感,形象自然。 DLP投影机还有一个优点是颗粒感弱。在SVGA800×600格式分辨率上,DLP投影机的像素结构比LCD弱,只要相对可视距离和投影图像画面大小调得合适,已经看不出像素结构LCD投影机特点:LCD的优点:首先在画面颜色上,现在主流的LCD投影机都为三片机,采用红、绿、蓝三原色独立的 LCD板。这就可以分别地调整每个彩色通道的亮度和对比度,投影效果非常好,能得到高度保真的色彩。在同样档次的DLP投影机,还只能用一片DLP,很大程度上由色轮的物理性质和灯的色温决定好坏,没什么好调整的,只能得到较为正确的色彩。但与同价位的LCD投影机相比,在图像区域的边缘,还是缺乏鲜艳的色调。 LCD 的第二个优点是光效率高。 LCD 投影机比用相同瓦数光源灯的DLP投影机有更高的ANSI流明光输出,在高亮度竞争中,LCD依然占着优势。7公斤重量级左右的投影机中,能达到3000 ANSI流明以上亮度的,都是LCD投影机。LCD的缺点:LCD投影机明显缺点是黑色层次表现太差,对比度不是很高。LCD投影机表现的黑色,看起来总是灰蒙蒙的,阴影部分就显得昏暗而毫无细节。这点非常不适合播放电影一类的视频,对于文字到是与DLP投影机差别不是很大。 第二个缺点是LCD投影机打出的画面看得见像素结构,观众好像是经过窗格子在观看画面。SVGA800×600格式的LCD投影机,不管屏幕图像的尺寸大小如何,都能看得清楚像素格子,除非用分辨率更高的产品。 现在LCD开始使用起了微透镜阵列MLA,可以提高XGA格式的LCD板的传输效率,柔化像素格子,使像素格子细微而不明显,且对图像的锐利程度不会带来任何影响。它能使LCD的像素结构感觉可以减少到几乎与DLP投影机一样,但还是有点差距。DIY投影仪的意思是自己动手做一投影仪,就目前普能用户所DIY的投影一般都是单片LCD投影液晶片投影,属光穿透式投影市面上销售的LCD投影现在都是三片液晶投影,这种投影特点是颜色还原好,但对比度不高除家庭专用投影外,因为LCD的老化问题,尤其是长时间高温工作环境,所以相对DLP投影来说,寿命会短一些DLP投影属反射式投影,主要原理是光通过TI公司的DMD芯片反射得到的图像,待点是对比度高,但现在除影院用的是三DLP投影,市面销售的都是单DLP的,因为成本及结构原因,DLP投影一般比LCD投影便宜液晶投影机中的光源是金属卤素灯或UHP冷光源,发出明亮的白光,经过光路系统中的分光镜,将白光分解为RGB红色、绿色、蓝色三种元素颜色的光线,RGB三种元素颜色的光线在精确的位置上穿过液晶体,这时候每一个液晶体的作用类似于光阀门,控制每一个液晶体中光线的通过与否以及通过光线的多少。三种元素颜色的光线就这样,经过投影仪的镜头准确投射到屏幕上,哪一点该是什么颜色、光的强度有多少,都分布的正正好好。就这样,在屏幕上投影组成了与源图像一致的色彩斑斓的图像。普通的LCD投影机具有色彩好、价格优势和亮度均匀性好等多方面优势。LCD投影机明显缺点是黑色层次表现太差,对比度不是很高。LCD投影机表现的黑色,看起来总是灰蒙蒙的,阴影部分就显得昏暗而毫无细节。这点非常不适合播放电影一类的视频,对于文字到是与DLP投影机差别不是很大。第二个缺点是LCD投影机打出的画面看得见像素结构,观众好像是经过窗格子在观看画面。SVGA800×600格式的LCD投影机,不管屏幕图像的尺寸大小如何,都能看得清楚像素格子,除非用分辨率更高的产品。目前,DLP投影机所占的市场分额还不及主力LCD投影机,但作为新型的投影机产品,在技术和应用市场方面,与LCD投影技术相比,DLP投影的最大优势在于有高解析度与高亮度等优点,图像更加清晰锐利,黑色和白色更纯正,灰度层次更加丰富,更具有体积小和重量轻的优势。DLP投影机的价格稍贵,但是在色彩表现上稍差。总结:DLP投影仪亮度更高,价格稍贵,LCD投影仪色彩更好,价格稍低。至于采购,还得看自己的需求。DLP是英文DigitalLightPorsessor的缩写,译作数字光处理器。DLP以DMDDigitalMicormirrorDevice数字微反射器作为光阀成像器件。DLP投影机的技术是反射式投影技术。反射式DMD器件的应用,DLP投影机拥有反射优势,在对比度和均匀性都非常出色,图像清晰度高、画面均匀、色彩锐利,并且图像噪声消失,画面质量稳定,精确的数字图像可不断再现,而且历久弥新。DLP投影机可分为:单片机、两片机、三片机。DMD数字信号的红,绿,蓝顺序旋转,小镜子根据像素的位置及色彩的多少被打开或关闭,此时DLP可以看作是只有一个光源和一组投影镜头组成的简单光路系统,镜头放大了DMD的反射影像并直接投射在屏幕上,这样一幅生动、明亮的演示效果就展现在我们面前了。由于普通DLP投影机用一片DMD芯片,最明显的优点就是外型小巧,投影机可以做得很紧凑。现市场上所有的1.5公斤以下的迷你型投影机都是DLP式,大多数LCD投影机要超过2.5公斤。DLP投影机的另一个优点是图像流畅,反差大。这些视频优点使其成为家庭影院世界中之首选品种。有较高的对比度,现在,大多数DLP投影机的对比度可做到600:1到800:1的之间,低价位的也可达450:1。LCD投影机对比度只在400:1附近,而低价位的才250:1。画面的视感冲击强烈,没有像素结构感,形象自然。DLP投影机还有一个优点是颗粒感弱。在SVGA800×600格式分辨率上,DLP投影机的像素结构比LCD弱,只要相对可视距离和投影图像画面大小调得合适,已经看不出像素结构。寿命长,画质稳定性好:反射技术使得DMD芯片吸收能量相对较少,而且由于采用半导体器件,耐高温性能好,长期使用后画面也不会出现明显的劣化。6编辑词条DLP目录[隐藏]数字光处理成像原理起源DLP的工作过程DMD成像的优势DLP系统的分类DLP的技术特点eMule电驴DLP数据泄露防护背景介绍数据泄漏防护的定义数据泄漏的途径数据泄漏防护的原理数据泄露防护DLP的前景数字光处理数字光处理成像原理起源DLP的工作过程DMD成像的优势DLP系统的分类DLP的技术特点eMule电驴DLP数据泄露防护背景介绍数据泄漏防护的定义数据泄漏的途径数据泄漏防护的原理数据泄露防护DLP的前景数字光处理[编辑本段]数字光处理DLP是“Digital Light Procession”的缩写,即为数字光处理,也就是说这种技术要先把影像信号经过数字处理,然后再把光投影出来。它是基于TI美国德州仪器公司开发的数字微镜元件——DMDDigital Micromirror Device来完成可视数字信息显示的技术。说得具体点,就是DLP投影技术应用了数字微镜晶片DMD来作为主要关键处理元件以实现数字光学处理过程。其原理是将通过UHP灯泡发射出的冷光源通过冷凝透镜,通过Rod将光均匀化,经过处理后的光通过一个色轮Color Wheel,将光分成RGB三色或者RGBW等更多色,再将色彩由透镜投射在DMD芯片上,最后反射经过投影镜头在投影屏幕上成像。[编辑本段]成像原理光源通过色轮后折射在DMD芯片上,DMD芯片在接受到控制板的控制信号后将光线发射到投影屏幕上。DMD芯片外观看起来只是一小片镜子,被封装在金属与玻璃组成的密闭空间内,事实上,这面镜子是由数十万乃至上百万个微镜所组成的。以XGA解析度的DMD芯片为例,在宽1cm,长1.4cm的面积里有1024×768=786432个微镜单元,每一个微镜代表一个像素,图像就由这些像素所构成。由于像素与芯片本身都相当微小,因此业界也称这些采用微型显示装置的产品为微显示器。[编辑本段]起源1991年,30万像素的液晶投影机已经被推出了,1996年液晶投影已经迅速发展到VGA甚至SVGA数据投影和家庭影院投影的阶段了,但是因为技术瓶颈,亮度与对比度都很难突破。在这样的背景下,DLP投影技术走上历史的舞台顺理成章。DLP的技术核心是DMD芯片,是由美国Larry Hornback博士于1977年发明的。最开始,主要是为了开发印刷技术的成像机制,先以模拟技术开发微型机械控制,1981年才改用数字式的控制技术,正式命名为Digital Micro-mirror Devices,并开始分成印刷技术与数字成像两个方向来研发。到了1991年德州仪器决定将数字成像的开发独立成一个事业部,并于1996年开发出第一个数字图像产品,1997年正式终止印刷技术的研发,全力进行数字图像的研发。[编辑本段]DLP的工作过程DMD器件是DLP的基础,一个DMD可被简单描述成为一个半导体光开关,50~130万个微镜片聚集在CMOS硅基片上。一片微镜片表示一个象素,变换速率为1000次/秒,或更快。每一镜片的尺寸为14μm×14μm或16μm×16μm,为便于调节其方向与角度,在其下方均设有类似铰链作用的转动装置。微镜片的转动受控于来自CMOS RAM的数字驱动信号。当数字信号被写入SRAM时,静电会激活地址电极、镜片和轭板YOKE以促使铰链装置转动。一旦接收到相应信号,镜片倾斜10°,从而使入射光的反射方向改变。处于投影状态的微镜片被示为“开”,并随来自SRAM的数字信号而倾斜+12°;如显微镜片处于非投影状态,则被示为“关”,并倾斜-12°。与此同时,“开”状态下被反射出去的入射光通过投影透镜将影像投影到屏幕上;而“关”状态下反射在微镜片上的入射光被光吸收器吸收。简而言之,DMD的工作原理就是借助微镜装置反射需要的光,同时通过光吸收器吸收不需要的光来实现影像的投影,而其光照方向则是借助静电作用,通过控制微镜片角度来实现的。通过对每一个镜片下的存储单元以二进制平面信号进行寻址,DMD阵列上的每个镜片以静电方式倾斜为开或关状态。决定每个镜片倾斜在哪个方向上为多长时间的技术被称为脉冲宽度调制PWM。镜片可以在一秒内开关1000多次,在这一点上,DLP成为一个简单的光学系统。通过聚光透镜以及颜色滤波系统后,来自投影灯的光线被直接照射在DMD上。当镜片在开的位置上时,它们通过投影透镜将光反射到屏幕上形成一个数字的方形像素投影图像。当 DMD 座板、投影灯、色轮和投影镜头协同工作时,这些翻动的镜面就能够一同将图像反射到演示墙面、电影屏幕或电视机屏幕上。[编辑本段]DMD成像的优势DMD可以提供1670万种颜色和256段灰度层次,从而确保DLP投影机可投影的活动影像画面色彩艳丽的细腻、自然逼真。DMD最多可内置2048×1152阵列,每个元件约可产生230万个镜面,这种DMD已有能力制成真正的高清晰度电视。⑴抹去图象中的缺陷DMD微镜器件非凡的快速开关速度与双脉冲宽度调制的一种精确的图像颜色和灰度复制技术相结合,使图像可以随着窗口的刷新而更加清晰,通过增强对比度,描绘边界线以及分离单个颜色而将图像中的缺陷抹去。⑵避免“纱门”效应在许多LCD投影图像中,我们会看到当一个图像尺寸增加时,LCD图像中的缝隙将变得更大,而在DLP投影机中则不会出现这样的情况,DMD镜面的大小和形状决定了这一切。每个镜片90%的面积动态地反射光线以生成一个投影图像,由于一个镜头与另一个镜头之间是如此的接近,所以图像看起来没有缝隙。DMD镜片体积微小,每一侧边的长度为16微米,相邻镜头之间的缝隙小于1微米。镜头是方形的,所以每一个镜片显示的内容要比实际图像更多。再加上当分辨率增加时大小及间距仍保持一致,因此无论分辨率如何变化,图像始终能够保持很高的清晰度。⑶与光亮并存许多观众经常会希望在观看投影时保持亮度或打开窗帘,与传统投影机相比,DLP投影机将更多的光线打到屏幕上,这也有赖于DLP本身的技术特点。DMD的强反射表面通过消除光路上的障碍以及将更多的光线反射到屏幕上,而最大化地利用了投影机的光源。DLP技术依据图像的内容对图像进行反射,DLP的光源有两种工作方式,或者通过一个透镜打到屏幕上,或者直接进入一个吸光器。更为有利的是,基于DLP技术的投影机的亮度是随着分辨率的增加而增加的。在如XGA和SXGA等更高分辨率的情况下,DMD提供更多的反射面积,如此一来就可以更为有效地利用灯光的亮度。⑶图象更加逼真自然DLP不仅仅是简单地投影图像,它还对它们进行了复制。在它的处理过程中,首先将源图像数字化为8到10位每色的灰度图像。然后,这些二进制图像输入进DMD,在那里它们与来自光源并经过仔细过滤的彩色光相结合。这些图像离开DMD后就成像到屏幕上,保持了源图像所有的光亮和微妙之处。DLP独一无二的色彩过滤过程控制了投影图像的色彩纯度,此技术的数字化控制支持无限次的色彩复制,并确保了原始图像栩栩如生地再现。随着其它显示技术及摄影技术的出现,DLP使得那些无生命的图像拥有了逼真的色彩。数字色彩的再现保证了图像与真实物质的还原性,而且没有发亮的斑点或其它投影机典型的冲失现象。⑷可靠性高DMD不仅通过了所有的标准半导体资格测试,系统制造非常严格,需要经过一连串的测试,所有元件均经过挑选证实可靠才能用作制造数码电子部分驱动DMD,而且还证明了在模拟操作环境中,它的生命期超过10万个小时。测试证明,DMD可以进行超过1700万亿次循环无故障运行,这相当于投影机的实际使用时间超过1995年。其它测试结果显示,DMD在超过11万个电力周期和11000个温度周期下无故障,以确保在需求较大的应用领域中提供30年以上的可靠运行期。⑸更便利的可移动性根据一般应用需求来看,一个单片DMD就可以实现大小、重量和亮度的统一,目前,大部分的家用或商用DLP投影机都采用了单片结构,而更高级的三片结构一般只应用在数字影院或高端领域,因此,用户可以得到一个更小、更亮、更易于携带而且足以提供出色图像质量的系统DLP技术是全数字底层结构,具有最少的信号噪音。[编辑本段]DLP系统的分类⑴单片DLP系统在一个单DMD投影系统中,需要用一个色轮来产生全彩色投影图像。色轮由红、绿、蓝滤波系统组成,它以60Hz的频率转动。在这种结构中,DLP工作在顺序颜色模式。输入信号被转化为RGB数据,数据按顺序写入DMD的SRAM,白光光源通过聚焦透镜聚集焦在色轮上,通过色轮的光线然后成像在DMD的表面。当色轮旋转时,红、绿、蓝光顺序地射在DMD上。色轮和视频图像是顺序进行的,所以当红光射到DMD上时,镜片按照红色信息应该显示的位置和强度倾斜到“开”,绿色和蓝色光及视频信号亦是如此工作。人体视觉系统集中红、绿、蓝信息并看到一个全彩色图像。通过投影透镜,在DMD表面形成的图像可以被投影到一个大屏幕上。⑵双片DLP系统这种系统利用了金属卤化物灯红光缺乏的特点。色轮不用红、绿、蓝滤光片,取而代之使用两个辅助颜色,品红和黄色。色轮的品红片段允许红光和蓝光通过,同时黄色片段可通过红色和绿色。结果是红光在所有时间内都通过,蓝色和绿色在品红-黄色色轮交替旋转中每种光实质上占用一半时间。一旦通过色轮,光线直接射到双色分光棱镜系统上。连续的红光被分离出来而射到专门用来处理红光和红色视频信号的DMD上,顺序的蓝色与绿色光投射到另一个DMD上,专门处理交替颜色,这一DMD由绿色和蓝色视频信号驱动。⑶三片DLP系统另外一种方法是将白光通过棱镜系统分成三原色。这种方法使用三个DMD,一个DMD对应于一种原色。应用三片DLP投影系统的主要原因是为了增加亮度。通过三片DMD,来自每一原色的光可直接连续地投射到它自己的DMD上。结果更多的光线到达屏幕,给出一个更亮的投影图像。这种高效的三片投影系统被用在超大屏幕和高亮度应用领域。⒋DLP的潜在问题人们常常提到的DLP投影机弱点只有一个,即“彩虹效应”,具体表现是色彩被简单地分离出明显的红、绿和蓝三种单色,看起来像雨后彩虹一样。这是由于用一个旋转色轮来调制图像色彩而产生的,同时因为有些人的视觉系统特别灵敏,能察觉出一种彩色转换到另一种彩色的过程,而不是像大多数人那样靠视觉暂留现象把几种单色混合成新的色彩。除了某些用户能把色彩分离出来,还有些用户可能因为色彩的迅速变化,而产生眼睛胀痛和头痛的情况。而LCD投影机和三片式DLP投影机都不会有这种现象,它们在物理结构上就是把三个固定的红、绿、蓝图像叠加而成。这一问题对不同的人,作用是不一样的。某些人能看出彩虹效应,甚至严重到画面几乎不能看。有些人只是偶尔会看到彩虹痕迹,远没到无法欣赏画面的程度。对于后者来说,DLP的这一缺点就没有实用上的影响。更幸运的是大多数人既看不出彩虹痕迹,也不会被眼胀、头痛所困惑。请想想如果人人都能在DLP投影机上看到彩虹效应,DLP投影机也就失去了存在的机会。但不管怎样彩虹效应总是一个问题。德州仪器公司和用DLP技术制造投影机的厂商还是在尽力解决这一问题。第一代DLP投影机色轮每秒旋转60次,相当于帧频60Hz,或每分钟3600转。在色轮中,红、绿、蓝像素各一段,所以,每种颜色每秒刷新也是60次。这种第一代产品称为“1X”转速。第一代产品还有少数人能看到彩虹效应,改进的第二代产品的色轮转速上升到2X,即120Hz和7200RPM,能看到彩虹效应的人就更少了。今天,很多专为家庭影院市场设计的DLP投影机用六段色轮、色轮转一圈出现两次红、绿、蓝,且色轮又以120Hz或7200RPM旋转,这样在商业上就称之为4X转速。不断提高色彩刷新速度,看得出彩虹效应的人数也就愈来愈少。但到目前,彩虹疚对少部份观众来说还是个问题。4.DLP技术的应用DLP技术是一种独创的、采用光学半导体产生数字式多光源显示的解决方案。 它是可靠性极高的全数字显示技术,能在各类产品如大屏幕数字电视、公司/家庭/专业会议投影机和数码相机DLP Cinema中提供最佳图像效果。同时,这一解决方案也是被全球众多电子企业所采用的完全成熟的独立技术。自1996年以来,已向超过 75 家的制造商供货500多万套系统。DLP技术已被广泛用于满足各种追求视觉图像优异质量的需求。它还是市场上的多功能显示技术。它是唯一能够同时支持世界上最小的投影机低于2-lbs和最大的电影屏幕高达75英尺的显示技术。这一技术能够使图像达到极高的保真度,给出清晰、明亮、色彩逼真的画面。[编辑本段]DLP的技术特点技术优点:DLP显示板的优点是它们有极快的响应时间。你可以在显示一帧图像时将独立的像素开关很多次。它使利用一块显示板通过逐场过滤field-sequential方式产生真彩图像。步骤如下:首先,绿光照射到面板上,机械镜子进行调整来显示图像的绿色像素数据。 然后镜子再次为图像的红色和蓝色的像素数据进行调整。一些投影仪通过使用第四种白色区域来增加图像的亮度并获得明亮的色调。所有这些发生得如此之快,以致人的眼睛无法察觉。循序出现的不同颜色的图像在大脑中重新组合起来形成一个完整的全彩色的图像。对高质量的投影系统,可以使用3块DLP显示板。每块板分别被被打上红色、绿色和蓝色,图像被重组为一个单一的真彩色的图像。这种技术已经被用在一些数字电影院中的大型投影设备上。DLP显示板有高分辨率而且非常可靠。 它们的对比度大约是多晶硅LCD投影仪的两倍,这使它们在明亮的房间中更有效。技术缺点:DLP本身几乎没有什么问题,但是它们比多晶硅面板更贵。当你仔细观察屏幕上移动的点的时候,尤其是在黑色背景上的白点,你会发现采用逐场过滤方式的图像将会分解为不同的颜色。使用投影机时,电机带动色轮旋转时会发出一定的噪音。现在市面上的一种新的固态滤色系统可以较好的解决这个问题
有用 0 无用 0 我要提问