数码相机照相技术问题 参数解释

更新时间:2015-10-27本文内容转载自互联网
1、饱和色,以色块的并置使色彩具有强烈的视觉冲击力和视觉美感,明亮、鲜艳、热烈、奔放,显示出鲜明的色彩对比效果2、白平衡英文名称为White Balance。物体颜色会因投射光线颜色产生改变,在不同光线的场合下拍摄出的照片会有不同的色温。例如以钨丝灯(电灯泡)照明的环境拍出的照片可能偏黄,一般来说,CCD没有办法像人眼一样会自动修正光线的改变3、锐利度用来调整影像清晰度。当影像清晰度略有不足时,可用加锐的方法使影像更清晰一些影响锐利度有两个关键。1.镜头的成像品质。2.感光元件。RGB、CMYK、LAB、HSB……也许很多朋友都看到过这些色彩模式,但你了解它们吗?大多数朋友都会说不了解吧。色彩模式是图形设计最基本的知识,不掌握怎么行呢?每一种模式都有自己的优缺点,都有自己的适用范围,下面我详细的跟大家谈谈这些色彩模式。1、 RGB模式RGB是色光的色彩模式。R代表红色,G代表绿色,B代表蓝色,三种色彩叠加形成了其它的色彩。因为三种颜色都有256个亮度水平级,所以三种色彩叠加就形成1670万种颜色了。也就是真彩色,通过它们足以在现绚丽的世界。在RGB模式中,由红、绿、蓝相叠加可以产生其它颜色,因此该模式也叫加色模式。所有显示器、投影设备以及电视机等等许多设备都依赖于这种加色模式来实现的。就编辑图象而言,RGB色彩模式也是最佳的色彩模式,因为它可以提供全屏幕的24bit的色彩范围,即真彩色显示。但是,如果将RGB模式用于打印就不是最佳的了,因为RGB模式所提供的有些色彩已经超出了打印的范围之外,因此在打印一幅真彩色的图象时,就必然会损失一部分亮度,并且比较鲜艳的色彩肯定会失真的。。这主要因为打印所用的是CMYK模式,而CMYK模式所定义的色彩要比RGB模式定义的色彩少很多,因此打印时,系统自动将RGB模式转换为CMYK模式,这样就难免损失一部分颜色,出现打印后失真的现象。2、 CMYK模式当阳光照射到一个物体上时,这个物体将吸收一部分光线,并将剩下的光线进行反射,反射的光线就是我们所看见的物体颜色。这是一种减色色彩模式,同时也是与RGB模式的根本不同之处。不但我们看物体的颜色时用到了这种减色模式,而且在纸上印刷时应用的也是这种减色模式。按照这种减色模式,就衍变出了适合印刷的CMYK色彩模式。CMYK代表印刷上用的四种颜色,C代表青色,M代表洋红色,Y代表黄色,K代表黑色。因为在实际引用中,青色、洋红色和黄色很难叠加形成真正的黑色,最多不过是褐色而已。因此才引入了K――黑色。黑色的作用是强化暗调,加深暗部色彩。CMYK模式是最佳的打印模式,RGB模式尽管色彩多,但不能完全打印出来。那么是不是在编辑的时候就采用CMYK模式呢?不是,原因如下:用CMYK模式编辑虽然能够避免色彩的损失,但运算速度很慢。主要因为:1、即使在CMYK模式下工作,Photoshop也必须将CMYK模式转变为显示器所使用的RGB模式。2、对于同样的图象,RGB模式只需要处理三个通道即可,而CMYK模式则需要处理四个 馈?/p> 由于用户所使用的扫描仪和显示器都是RGB设备,所以无论什么时候使用CMYK模式工作都有把RGB模式转换为CMYK模式这样一个过程。因此,是否应用CMYK模式进行编辑都成在RGB模式和CMYK模式转换的问题。这里给个建议,也算是我的一点经验吧。先用RGB模式进行编辑工作,再用CMYK模式进行打印工作,在打印前才进行转换,然后加入必要的色彩校正,锐化和休整。这样虽然使Photoshop在CMYK模式下速度慢一些,但可节省大部分编辑时间。为了快速预览CMYK模式下图象的显示效果,而不转换模式可以使用View菜单下的CMYK Preview(CMYK 预览)命令。这种打印前的模式转换,并不是避免图象损失最佳的途径,最佳方法是将Lab模式和CMYK模式相结合使用,这样可以最大程度的减少图象失真。下面介绍Lab模式。3、 Lab模式Lab模式是有国际照明委员会(CIE)于1976年(哇,好遥远呀。)公布的一种色彩模式。你已经明白了:RGB模式是一种发光屏幕的加色模式,CMYK模式是一种颜色反光的印刷减色模式。那么,Lab有是什么处理模式呢?Lab模式既不依赖光线,也不依赖于颜料,它是CIE组织确定的一个理论上包括了人眼可以看见的所有色彩的色彩模式。Lab模式弥补了RGB和CMYK两种色彩模式的不足。Lab模式由三个通道组成,但不是R、G、B通道。它的一个通道是亮度,即L。另外两个是色彩通道,用A和B来表示。A通道包括的颜色是从深绿色(底亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);B通道则是从亮蓝色(底亮度值)到灰色(中亮度值)再到黄色(高亮度值)。因此,这种色彩混合后将产生明亮的色彩。Lab模式所定义的色彩最多,且与光线及设备无关并且处理速度与RGB模式同样快,比CMYK模式快很多。因此,可以放心大胆的在图象编辑中使用Lab模式。而且,Lab模式在转换成CMYK模式时色彩没有丢失或被替换。因此,最佳避免色彩损失的方法是:应用Lab模式编辑图象,再转换为CMYK模式打印输出。当你将RGB模式转换成CMYK模式时,Photoshop将自动将RGB模式转换为Lab模式,再转换为CMYK模式。在表达色彩范围上,处于第一位的是Lab模式,第二位的是RGB模式,第三位是CMYK模式。4、HSB模式在介绍完三种主要的色彩模式后,现在介绍另一种色彩模式――HSB色彩模式,它在色彩汲取窗口中才会出现。在HSB模式中,H表示色相,S表示饱和度,B表示亮度。色相:是纯色,即组成可见光谱的单色。红色在0度,绿色在120度,蓝色在240度。它基本上是RGB模式全色度的饼状图。饱和度:表示色彩的纯度,为0时为会色。白、黑和其他灰色色彩都没有饱和度的。在最大饱和度时,每一色相具有最纯的色光。亮度:是色彩的明亮读。为0时即为黑色。最大亮度是色彩最鲜明的状态。5、 Indexed模式Indexed模式就是索引颜色模式,也叫做映射颜色。在这种模式下,只能存储一个8bit色彩深度的文件,即最多256种颜色,而且颜色都是预先定义好的。一幅图象所有的颜色都在它的图象文件里定义,也就是将所有色彩映射到一个色彩盘里,这就叫色彩对照表。因此,当打开图象文件时,色彩对照表也一同被读入了Photoshop中,Photoshop由色彩对照表找到最终的色彩值。6、GrauScale模式在介绍完绚丽彩色世界后,现在进入灰色世界。其实灰色也是彩色的一种,也有绚丽的一面。灰度文件是可以组成多达256级灰度的8bit图象,亮度是控制灰度的唯一要素。亮度约高,灰度越浅,越接近于白色;亮度越底,灰度越深,就越接近于黑色。因此,黑色和白色包括在灰度之中,它们是灰度模式的一个子集。GrauScale模式及灰度模式。灰度模式中只存在灰度。当一个彩色文件被转换为灰度文件时,所有的颜色信息都将从文件中去掉。尽管Photoshop允许将一个灰度文件转换为彩色模式文件,但不可能将原来的色彩丝毫不变的恢复回来。在灰度文件中,图象的色彩饱和度为0,亮度是唯一能够影响灰度图象的选项。亮度是光强的度量,0%代表黑色,100%代表白色。而在Color调色板中的K值是用于衡量黑色油墨用量的。7、 Bitmap模式黑白位图模式就是只有黑色和白色两种像素组成的图象,有些人认为黑色既然是灰度色彩模式的一个子集,因此这种模式就没有多大用处。其实这是一种错误的认识,正因为有了Bitmap模式,才能更完善的控制灰度图象的打印输出。事实上像激光打印机这样的输出设备都是靠细小的点来渲染灰度图象的,因此使用Bitmap模式就可以更好的设定网点的大小形状和互相的角度。需要注意的是,只有灰度图象或多通道图象才能被转化为Bitmap模式,转换是将出现一个对话框,你可以在这里设置文件的输出分辨率和转换方式。具体设置方法如下:Output(输出):指黑白图象的分辨率。Method(方式):提供以下5种设置。50%Threshold(临界值):选中此项,大于50%的灰度像素将变为黑色,而小于等于50%的灰度图象将变成白色。Pattern Dither(图象抖动):使用一些随机的黑白像素来抖动图象。使用这种方法生成的图象很难看,而且像素之间几乎没有什么空隙。Diffusion Dither(扩散抖动):使用此项用以生成一种金属版效果。它将采用一种发散过程来把一个像素改变成单色,此结果是一种颗粒的效果。Halftone Screen(半色泽屏幕):这种转换使图象看上去好象是一种半色泽屏幕打印的一种灰度图象。Custom Pattern(自定义图案):这种转换方法允许把一个定制的图案(用Edit菜单中的Custom Pattern命令定义的图案)加给一个位图图象。请注意了,当图象转换到Bitmap模式后,无法进行其它编辑,甚至不能复原灰度模式时的图象。8、 Duotone双色套模式Duotone模式用一种灰度油墨或彩色油墨在渲染一个灰度图象,为双色套印或同色浓淡套印模式。在这种模式中,最多可以向灰度图象中添加4种颜色,这样就可以打印出比单纯灰度模式要好看得多的图象曝光取决于许多不同的因素。其中有些是我们平时知道的,并可预先确定。但另有一些,就非得借助一个适当的测光表才能决定。 举例来说,胶卷速度,镜头的最大孔径,可用的快门速度和光圈的范围,这些都是已知的因素。 未知的因素是光线的照度和物体的反射情况。所以,测定正确曝光实际上就是测定这些未知的变数,并且把测出的数字如测光表里已有的信息汇合一起进行处理,从而得出一组可以直接用于相机上的最佳速度和光圈。下面我们就人射式测光和反射式测光分别进行详细说明。 人射式测光 入射式测光是从主体位置把测光表对着相机。这种方法主要是测光线的强度,完全不考虑主体反光这个因素。很明显,只有在拍摄的景物范围内光线条件变化很大的时候,才有必要从主体的位置去测光。如在近距离内使用人工照明,光线会随着距离的增加而显著地减弱,所以,必须从主体的位置测定,才能测出光线的正确强度。在室外阳光下拍摄时,则总是在接近相机的位置测光。 由于人射式测光所测的是投射在平面上的光线,所以测光表的受光角必须很大,足以包括180度的范围。要做到这一点,可在测光表的测光口上加一个球形散光罩。这样测出的数字是以主体的平均反射率为17%为基准的。对于反差较高的物体,必须作一定的校正:负片的曝光应比测光表上所所的略多一些,而反转片则应略少一些。由于这种方式的测光不能进行选择性侧光和点式测光,要取得良好的效果,就得作一些估计工作,还得有一定的经验。如果光线难于测定,通常需要另测一次反射光,以便和入射光测出的数字互相比较。要是这二者差别太大,就应找出造成这种差别的原因,并对曝光作相应的校正。 反射式测光 用这种方式测光的时候,总是把测光表从相机的位置对向被摄体。为了得到精确的结果,测光表的测光角和所用镜头的视角应大致差不多。测光角如果大大超过镜头的视角,就应该把测光表放到离主体较近的地方,使测光表的视场和镜头大致一样。 在反射式测光中,测光表显示的是主体的平均反射光,同时,它还把测光角内一切其它反射光都测量进去了。 只要最强的高光和最暗的阴影部份的测定值和整个景物的重点平均测定值相差不大,这种测光方式总能提供准确的曝光值。如果景物中有小块极亮或极暗部分,所测出的总平均值必须加以校正。其校正程度视所用胶卷的类型和这些极亮或极暗部分在画面上的重要性如何而定。 如用的是负片,最好对应表现层次的阴影部分作选择性的近距离测光,并对测得的曝光值降低1级曝光值(即开大一级光圈)。 如用的是反转片,则正好相反。景物的明亮部分(不一定是最亮的高光部分)仍应表现一定的层次,因而应测出其曝光值,并对测出的结果开大1/2一三级光圈。对于选择性测光(点式测光),这种方式的效果最好,因为测光表所测的只是物体上小面积的突出部分。 用一个可以根据需要而改变测光角的测光表,或用一只校推测光表靠近主体的地方,是很容易进行选择性的点式测光的。 如果我们了解及掌握这两种测光方式的原理,无论用那一种方式都能得到良好的、一致的效果。我们知道有两种测光方法:1.平均测光(或叫总体测光)。2.选择性测光(或叫点式测光)。在这两者之间存在着根本不同之处。 顾名思义,平均测光(总体测光)测定的是物体的总亮度;它把最亮部份和最暗部分综合起来同时测定,从而提供一个平均亮度值,并以适当的速度优圈组合显示出来。对于低反差的物体或明暗面积分布均匀的花纹(如斑马)来说,用这种方法测光,就能得到不但可靠,而且是最合适的结果。 如果只要得到物体上某部分的绝对正确的曝光,比如肖象照片中皮肤颜色的准确再现,就应用选择性测光,并以所得的测定值作最终确定曝光的基础。其余不那么重要部分,可让它稍为曝光过度或曝光不足。如有点式测光或点测光附件,选择性测光就会顺利得多。 物体反差的测定 有些新式测光表的使用范围很广:它不仅能测定适当的速度/光圈组合,还可以用来测定物体的反差范围。这种反差范围必须限制在某种程度以下,不然就无法如实地再现主体。“反差”这个词可用于各种不同的场合,规解释如下: 影象反差:是胶片乳剂准确再现的影调范围。 物体反差:是物体表面最亮部分和最暗部分的差别。也可以叫作总亮度范围。 光线反差:是指不同光源亮度之间的相对关系,例如主光与辅光的关系。 要正确估计反差在摄影中的作用,就得了解各反差值之间的互相依存关系,并把这种关系和胶片所能达到的反差范围联系起来考虑。 1.影象反差是物体反差和光线反差的乘积: 影象反差=物体反差X光线反差 2.某一胶片感光乳剂的反差范围在很大程度上是取决于它的用途:主要作放映用的反转片,它的反差范围远远大于制作照片用的负片。 人们的眼睛对色彩和反差的感受极其主观,也极不可靠。要想精确地测出反差并得到最佳曝光测定数,就得有一个高质量的手持测光表,能测定入射光,也能测定反射光。 首先,要测定物体反差(或叫总亮度范围),它是由物体各部分的反光性和色值决定的。所以用反射式测光法测出几个局部的数值就可得到物体反差。例如,光圈为f5.6时,测出的最亮部分的快门速度为1/500秒,而最暗部分为1/30秒,这两档快门速度就是物体的亮度范围。就是说,物体反差决定于这两档快门速度的比率,即 30 1 ――― = ―――=1:16(物体反差) 500 16 测定光线反差也很简单,因为我们可以从每个光源测出其入射光的亮度。比如,在同样的光圈下,如测得的主光的快门速度为1/100秒,辅光为1/30秒),则. 30 1 光线反差为: ――― = ―――(1:3) 100 3 这样,我们就能在所得到的这些反差值的基础上计算出影象反差: 物体反差X光线反差=影象反差 1 1 1 ―― X ―― = ―― = 1:50 16 3 48 假投拍摄者必须用小于1:32的影象反差才能使彩色负片有良好的再现能力,那他只有把光线反差从1:3改为1:2,才能把影象反差从1:50降低到1:32。这意味着物体的光线反差要小些,平谈些。这样,就可得到一张影象反差为1:32的负片,用它来印制照片,就能表现出完美的色调范围。 根据高光和阴影的测定值确定了物体的反差值以后,下一步就可以算出适当的曝光了。我们可以把最初选定的f5.6作为拍摄用的光圈,然后把1/500秒和1/30秒之间的速度,即1/125秒,作为正确曝光的速度,也可以用其它任何相应的速度和光圈组合来代替1/125秒和f5.6。 适用于反转片的光线反差一般为1:3,在这个反差范围内,物体的亮部和暗部的色调关系和色彩可以得到真实的再现。换句话说,只要最亮的灯和最暗的灯的差别不超过因数3,就不会由照明反差过大而产生任何曝光问题。负片可能接受的照明反差较大,可达到1:6。但这两类胶片的影象反差都必须压缩到1:32,这样透明片或负片才能作为原底,用来印刷和复制。然而,如要得到最佳效最,最好用1:16那样低的影象反差。 另一方面,如果透明片只打算用来放映幻灯,影象反差可以达到1:200此这么大的反差范围,对物体反差和光线反差自然能提供更大的灵活性。光线反差不仅在摄影室里就是在室外,都有很大的作用。在纬度适中地区,阳光明朗的时候,光线反差为l:5,在薄雾的时候为1:4。浓雾会改变平常室外光线的性质,把通常日光下的反差完全消除,使光比下降到1:1。总的说来,拍摄者控制光线反差的手段是很多的,他可以给阴影部分增加一些光线,以达到光比平衡,也可以用反光板来达到同一目的。 原文载:德国《国际摄影技术》
有用 0 无用 0 我要提问